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The problem of the motion of a particle in a standing sound wave is
solved with allowance for the nonuniformity of particle motion under
the action of a variable force. A new equation of particle motion is
obtained for this case.

The relation

g (KX) = tg (KX,) exp By, (1)
where
2D2
B =2 KRE (2)
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was obtained [1] to describe the motion of a particle
acted upon by the radiation force of the sound field of
a standing wave

F=p§—KnR%ﬁn@KXL (3)

but without allowance for the second derivative with
respect to time.

According to [2], in a plane standing wave the ra-
diation force acting on a small spherical particle is
given by

F = 4n KER® ysin (2K X), (4)
where
2
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An analysis of the radiation force leads to the con-
clusion that when p > py, the particles are bunched at
the velocity antinode and at the velocity nodes p < g,
[3].

According to [4], in computing the viscosity, we
assume the small spherical liquid particles to be solid.
Under these conditions the friction force expressed in
terms of the Stokes law is

F=6anRX. (5)

The differential equation of particle motion with
allowance for the second derivative is

£ 4 pi—bsing =0, (6)

where we have introduced the notation u =(9/2 )(n/Rzp),
b = (6/p K EY; these quantities are constant for a given
medium, given particles, and given acoustic energy
density; ¢ = 2KX is a new variable. With the initial
conditions

t=0’é:0’§=§0 (7)

this equation has the following solution:
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If R «< 1, then u > 1, and it can be shown that the
last term in the denominator of the integrand is much
smaller than the first two terms over the entire in-
terval of particle motion. Taking this into account, we
obtain

— 0

t= l/_lfl [m ltg E z
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It can be shown [5] that @ and u are related by

cos@=—V—1}—’:u—2, sinex—ﬁﬁ. (10)
We rewrite Eq. (9) as
ig (Kx +%) —tg (KXO +—g—) expBt, (1)
where
12 K*R’E (12)

= V492R4+81nz_'

Thus, we conclude that the velocity of small spheri-
cal particles in a plane standing sound wave depends
on the position of the latter (8) relative to the node or
antinode.

Consideration of the nonuniform motion of the par-
ticle shows that the exponent in Eq. (11) is expressed
by relation (12) rather than by relation (2).

From Eq. (11) it follows that the particles are
bunched in the region of the node or antinode (depend-
ing on the relation between py and p) our the interval
6/2, where # is determined from (10), while the ex-
ponent is a function of the particle density and of the
radius in a manner different from that given in {1} (2).
The condition R < 1is quite accurately satisfied for all
emulsions and suspensions, since the radius of the
particle in highly dispersed emulsions and suspensions
lies in the range from 1 u to several tens of microns,
i.e., on the order of 10" m.

NOTATION

F is the mean force; E is the mean sound energy

- density; K is the wave number; R is the particle radius;



90

X is the coordinate normal to the wave front; p, is the
density of the medium; p is the density of the particle;
C, is the speed of sound in the medium; C is the speed
of sound in the particle; X is the particle velocity; X is
the particle acceleration; t is the time; and 7 is the
liquid viscosity.
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An equation is presented for the growth of a stationary spherical gas
bubble in a finite spherical liquid volume, for which the familiar
Rayleigh equation is the zero-order approximation. The results of
computer solutions of the derived equation and the Rayleigh equation
are compared.

In {1] Rayleigh derived an equation for the growth
of a stationary spherical gas bubble in an infinite
volume of liquid. Thus, from the equations of hydro-
dynamics and continuity in a spherical coordinate sys-
tem

(60 avj' oP
P [

with boundary condition VlrzR = R(t), where, as usual,
x =dx/dt, one obtains

RR*+-2RR*  2R'R® 1 P

r2 & == 0 a_r (1)

Then Rayleigh, integrating (1) from r =R tor =,
obtained his familiar equation

RE+ 2= L (Pr—Pa). @)
2 0

Equation (2) has been used by many authors (for ex-
ample, {2—5]) in connection with problems involving
the growth of a bubble in a liquid. However, the finite-
ness of the liquid volume has not been taken into ac-
count.

To estimate the effect of this factor on the bubble
growth and to compare with the Rayleigh solution, we
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Deviation of the solutions for R~ in Egs. (4)
with @ = var from the solution Ry of the Ray-

leigh equation (for Q = «). Plotted along the
axis of abscissas, to a logarithmic scale, are
the time t (sec) and the corresponding radius
R (- 103, cm); along the ordinate axis, to a
variable scale, we have the deviation in % of
Reo from RQ for the corresponding t. 6=

= (RQ — Ra) - 100/RQ.

formulate the simple following problem: at time t = 0
a spherical gas bubble of radius Ry is formed and be-
gins to grow at the center of a spherical volume Q of
liquid with infinite permeability at the boundary, the



