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The problem of the motion of a particle in a standing sound wave is 
solved with allowance for the nonuniformity of particle motion under 
the action of a variable force. A new equation of particle motion is 
obtained for this case. 

The relat ion 

tg (KX) = tg (KXo) exp Bd, 

where  

( t)  
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was obtained [1] to de sc r ibe  the mot ion of a pa r t i c l e  
acted upon by the rad ia t ion  fo r ce  of the sound f ie ld  of 
a standing wave 

F = ~ K~ RSEsin(2KX), (3) 
3 

but without al lowance for the second der iva t ive  with 
r e s p e c t  to t ime.  

According  to [2], in a plane standing wave the r a -  
diat ion fo rce  act ing on a smal l  spher ica l  pa r t i c l e  is 
given by 

F = 4~ KER s ~sin (2KX), (4) 

where 

2 
po + -~- (Po - -  p) c 2 p 

2 P0 + P Co 2 Po " 

An analys is  of the radia t ion  fo rce  leads to the con-  
c lusion that when p > P0, the p a r t i c l e s  a re  bunched at 
the ve loc i ty  antinode and at the ve loc i ty  nodes p < P0 
[31. 

According to [4], in computing the v iscos i ty ,  we 
as sume  the sma l l  spher ica l  l iquid p a r t i c l e s  to be solid. 
Under these  conditions the f r i c t ion  fo rce  e x p r e s s e d  in 
t e r m s  of the Stokes law is 

F=6~TIR2. (5) 

The d i f ferent ia l  equation of pa r t i c l e  mot ion with 
al lowance for the second de r iva t ive  is 

~ +  9 6 - - b  s i n ~  = 0 ,  ( 6 )  

where  we have introduced the notation # = (9/2)(v/RZp),  
b = (6/p)KZEr these  quanti t ies  are  constant for a given 
medium,  given pa r t i c l e s ,  and given acoust ic  energy  
densi ty;  ~ = 2tCK is a new var iab le .  With the ini t ial  
conditions 

t = 0 ,  ~ = 0 , . ~ = ~ o  (7) 

this equation has the fol lowing solution: 

t =  1 + ~  b ~ { ,as in~--cos~--  

_ b~ (~sin~o_eos~o)exp[_~(g ,~) 1 d~. (8) 
1 + t ~  ~ v , 

f i R  << 1, t hen#>>  1, and it can be shown that the 
l as t  t e r m  in the denominator  of the integrand is much 
s m a l l e r  than the f i r s t  two t e r m s  over  the en t i re  in-  
t e r v a l  of pa r t i c l e  motion. Taking this into account, we 
obtain 

- -  ~ o + 0 ,  

It can be shown [51 that 0 and ~ are  r e l a t ed  by 

c o s 0 =  ~ , s in0- -  1 (10) 
V T T ~  ~ g 1 + ~ " 

We r e w r i t e  Eq. (9) as 

tg ( K x + O ) : t g ( K x o + O )  expBt, (11) 

where  

B -- 12 K2R~E (12) 
V 4p~R ~+81~1 ~ 

Thus, we conclude that the ve loc i ty  of smal l  sphe r i -  
cal  p a r t i c l e s  in a plane standing sound wave depends 
on the posi t ion of the la t te r  (8) r e l a t ive  to the node or 
antinode. 

Cons idera t ion  of the nonuniform motion of the p a r -  
t ic le  shows that the exponent in Eq. (11) is exp res sed  
by re la t ion  (12) r a t h e r  than by r e l a t ion  (2). 

F r o m  Eq. (11) it follows that the p a r t i c l e s  a re  
bunched in the reg ion  of the node or antinode (depend- 
ing on the r e l a t ion  between p 0 and p) our the in terva l  
0/2, where  0 is de te rmined  f rom (10), while the ex-  

ponent is a function of the pa r t i c l e  densi ty  and of the 
radius  in a manner  d i f ferent  f rom that given in [1] (2). 
The condition R << i is quite accura te ly  sa t i s f ied  for all 
emuls ions  and suspensions ,  s i n c e t h e  radius  of the 
pa r t i c l e  in highly d i spe r sed  emuls ions  and suspensions  
l ies  in the range f rom 1 # to s eve ra l  tens of mic rons ,  
i. e . ,  on the order of 10 .6 m. 

NOTATION 

F is the mean force; E is the mean sound energy 

density; K is the wave number; R is the particle radius; 
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X is the coordinate  normal  to the wave front;  P0 is the 
densi ty of the medium;  p is the densi ty of the par t i c le ;  

C o is the speed of sound in the medium; C is the speed 
of sound in the par t ic le ;  :~ is the par t i c le  ve loci ty ;  X is 
the par t ic le  acce le ra t ion ;  t is the t ime;  and 77 is the 
liquid v i scos i ty .  
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An equation is presented for the growth of a stationary spherical gas 
bubble in a finite spherical liquid volume, for which the familiar 
Rayleigh equation is the zero-order approximation. The results of 
computer solutions of the derived equation and the Rayleigh equation 
are compared. 

In [1] Rayleigh der ived  an equation for the growth 
of a s ta t ionary spher ica l  gas bubble in an infinite 
volume of liquid. Thus, f rom the equations of hydro-  
dynamics and continuity in a spher ica l  coordinate  sys -  

tem 

p - ~ - + v  -~r 0r ' 

Ov ~_ 2v = 0  
Or r 

with boundary condition V[r= R = l~(t), where,  as usual,  
- dx/dt ,  one obtains 

~R ~ + 2R]~ 2R4 t~2 1 OP 
r ~ r 5 p Or " ( 1 )  

Then Rayleigh,  in tegrat ing (1) f rom r = R to r = 0% 
obtained his f ami l i a r  equation 

RR -b 3 R ~ _  1 (PR --P| (2) 
2 p 

Equation (2) has been used by many authors (for ex-  
ample,  [2-5])  in connection with p rob lems  involving 
the growth of a bubble in a liquid. However,  the f in i t e -  
ness  of the liquid volume has not been taken into ac-  
count. 

To es t imate  the effect  of this fac tor  on the bubble 
growth and to compare  with the Rayleigh solution, we 
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Deviat ion of the solutions for RQ in Eqs. (4) 
with Q = var  f rom the solution Roo o f t h e R a y -  
leigh equation (for Q = oo). Plotted along the 
axis of absc i s sas ,  to a logar i thmic  scale ,  are  
the t ime t (sec) and the cor responding  radius  
Roo (. 103, cm); along the ordinate  axis,  to a 
var iab le  scale ,  we have the deviat ion in % of 
Roo f rom RQ for  the cor responding  t. 5 = 

= (RQ - R~) �9 10O/RQ. 

formulate the simple following problemi at time t = 0 
a spherical gas bubble of radius R 0 is formed and be-  
gins to grow at the center of a spherical volume Q of 
liquid with infinite permeabili ty at the boundary, the 


